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a b s t r a c t

The model problem of the formation of a gas hydrate when a gas is injected into a porous medium,
filled in the initial state with a gas and water, is considered in the one-dimensional approximation. A
detailed pattern of the seepage flow with phase transitions for different modes of gas injection is obtained.
Three seepage modes in a porous medium are possible, which differ qualitatively in the temperature and
hydrate saturation fields. At low boundary pressures no hydrate is formed and the temperature distri-
bution increases monotonically. As the boundary pressure increases, when the corresponding values of
the pressure and temperature on the phase diagram lie in the region of gas-hydrate stability (below the
equilibrium curve), a purely frontal pattern of hydrate formation is obtained with a monotonic tem-
perature distribution. When the boundary pressure is increased further, an extended region of hydrate
formation appears with a convex temperature profile, where, depending on the values of the boundary
pressure, the hydrate saturation may be continuous (at high boundary pressures) or change abruptly at
lower boundary pressures.

© 2009 Elsevier Ltd. All rights reserved.

The interest in analysing processes related to the formation of gas hydrates is due to the development of safe and economic methods
of natural-gas conservation.1,2 The equilibrium temperature of phase transitions for gas hydrates depends quite strongly on the pressure,
and hence their formation and expansion when thermal and force fields act on a porous medium may occur on frontal boundaries, and
also within the volume;3–6 therefore, the theory of these processes is an extension of Stefan’s problem.

1. Formulation of the problem

To describe processes of heat and mass transfer when a gas is pumped into a porous stratum we will use the following assumptions.
A single-temperature mode is considered, i.e., the temperatures of the porous medium and of the saturating substance (gas, hydrate or
water) are identical. The hydrate is a two-component system with a mass concentration of gas G. The skeleton of the porous medium, the
gas hydrate and the water are incompressible and fixed, the porosity is constant and the gas is calorifically perfect.

With these assumptions, we will write the equations of conservation of mass, Darcy’s law and the equation of state of the gas and the
heat flux equation for the one-dimensional problem as follows:

(1.1)
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Here m is the porosity, p is the pressure, T is the temperature, �j and Sj are the true density and saturation of the pores of the j-th phase
(j = g, �, h, sk), the subscripts g, �, h and sk relate to the parameters of the gas, water, hydrate and skeleton of the porous medium, �g,
kg and �g are the velocity, permeability and dynamic viscosity of the gas phase, Lh is the specific heat of the hydrate formation, cj and
�j are the specific heat capacity and thermal conductivity of the phases, and �c and � are the specific volume heat capacity and thermal
conductivity of the system. Since, in the majority of cases, the thermal conductivity and heat capacity of the stratum are determined by the
porous skeleton, the variability of the thermal diffusivity will be neglected. Moreover, it follows from estimates given previously in Ref. 3,
that the term in the heat-flux equation, related to the work of the pressure forces, makes an unimportant contribution.

We have the following equality for the ratio of the rates of seepage of the water and gas

where ki(i = �, g) are the phase permeabiities. Since the gas viscosity �g is considerably less than the water viscosity ��, this ratio is always
usually small (with the exception of cases when the initial water saturation S�0 is close to a certain limit value S�∗, which will be determined
later). Hence, in the majority of cases of practical interest, the assumption that the liquid is at rest �� = 0 is justified.

The dependence of the permeability for the gas kj on the actual porosity mSg will be specified using Kozeny’s formula.7 We then obtain
the following relation between the permeability and the gas saturation

(1.2)

The quantity k0 corresponds to the permeability of the skeleton.
The values of the temperature and pressure in the region in which the hydrate is formed are related to the phase equilibrium condition2

(1.3)

where T0 is the initial temperature of the system, ps0 is the equilibrium pressure, corresponding to the initial temperature, and T* is an
empirical parameter, the value of which depends on the form of the gas hydrate.

According modern ideas,8 the formation of hydrate particles is accompanied by non-equilibrium processes, due to diffusion of the
hydrate-forming gas towards the water-hydrate contact surface through the layer of water and hydrate. Assuming that the characteristic
thicknesses of these layers is of the order of the dimensions of the pore channels

√
kg/m, we obtain the estimate tD = kg/(mD) for the

characteristic relaxation times tD of diffusion non-equilibrium, where D is the diffusion coefficient. For porous media of interest in practice,
the permeabiity and diffusion coefficient lie in the ranges kg ∼ 10−14–10−12 m2 and D ∼ 10−11–10−9 m2/s, while the value of the porosity
m ∼ 10−1. Hence, we have tD ≤ 1 s for the characteristic times of diffusion non-equilibrium. Consequently, compared with the times that
are of interest in the problem being considered here, these characteristic times, as a rule, are short.

Three characteristic regions may arise when a gas hydrate is formed in a porous stratum. In the region close to the boundary x = 0 the
pores are filled with gas and hydrate. In the second (intermediate) region gas hydrate is formed, and hence here the pores are filled with
gas, water and hydrate. In the third (far) region gas and water are present. At the boundaries of these regions the conditions of mass and
heat balance must be satisfied4

(1.4)

Here [�] is the jump in the parameter � at the boundary x = x(i) (i = n,d) between the regions, ẋ(i) is the velocity of motion of this boundary, the
value i = n relates to the boundary between the near and intermediate regions, and i = d relates to the boundary between the intermediate
and far regions. The temperature and pressure in these regions will be assumed to be continuous.

Suppose the stratum, at the initial instant of time, is saturated with gas (Sg = Sg0) and water (S� = S�0), the pressure p0 and the temperature
T0 of which in the initial state correspond to the thermodynamic conditions for their existence in a free state (p0 ≤ ps0) and are the same
over the whole stratum. These conditions can be written as follows

(1.5)

When t > 0 gas (similar to the initial gas) at a temperature Te at constant pressure pe begins to enter through the boundary x = 0. The
boundary condition then has the form

(1.6)

The problem has a self-similar solution. As already noted, there are two ways in which the hydrate can be formed. In the first, the hydrate
is formed completely on the front boundary. In the second an extended region with phase transitions is formed. Consequently, the first
mode can be regarded as the limiting situation, when the intermediate region degenerates into a phase-transition surface (x(n) = x(d) = x(s)).

In Fig. 1 we show, in the phase plane (p,T), these two ways in which a hydrate can be formed for the same initial state (0) in a porous
medium. The boundary conditions at x = 0, corresponding to the two regimes, are denoted by the points (e1) and (e2). The point (s) on the
gas-water-hydrate (g, �, h) system phase equilibrium line corresponds to the frontal boundary of the phase transitions for the first mode.
The part of the line on the phase-equilibrium curve between the points s(n) and s(d) corresponds to an intermediate region for the second
mode, while the points themselves correspond to the near and far boundaries of the intermediate region.
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Fig. 1.

2. Solutions in the near and far regions

We will introduce the self-similar variable

where ℵ(T) is the thermal diffusivity of the stratum.
The second equation of (1.1) can be integrated, taking into account the initial condition for S� (1.5). As a result we obtain the relations

(2.1)

Hence, in the light of these assumptions, assuming S� = 0, we have for the near region (0 ≤ x ≤ x(n)) from relations (2.1)

(2.2)

Hence, in the far and near regions gas seepage in the porous medium occurs with constant but different values of the actual porosity and
permeability in each region.

In view of the fact that the density of the hydrate is less than the density of water, the transfer of water into the composition of the
hydrate will reduce the actual porosity of the system. Since the hydrate saturation cannot exceed unity (She < 1), the assumed scheme is
applicable for an initial water saturation, which satisfies the condition

In fact, to satisfy the hypothesis that the liquid is at rest, as was pointed out, the value of S�0 must be somewhat lower than S�0∗, in order
for the following condition to be satisfied over the seepage region

Usually, the characteristic pressure drop �p = pe − p0 and the characteristic temperature drop �T = Te − T0 in the seepage region satisfy
the conditions

The following estimates then follow from the equation of state for a calorifically perfect gas

Hence, the change in density due to the variability of the temperature can be neglected. Using Leibenzon’s linearization method,7 we obtain
the following solution for the dimensionless pressure P = p/p0 and temperature � = T/T0 in the near and far regions:
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when 0 < � < �(n)

(2.3)

when �(d) < � < ∞

(2.4)

Here �(i) = x(i)/
√

ℵ(T)t (i = n, d) are the self-similar coordinates of the frontal boundaries. For the dimensionless coefficients, occurring in
these solutions, and also in the solutions derived later, we have

(2.5)

3. The equation of piezoconductivity in the intermediate region

The first equation of (1.1), taking equalities (2.1) into account, can be reduced to the form

(3.1)

In particular, for methane gas hydrate2 we have

and, consequently, �gh ≈ �h/2. Since in the majority of cases �g � �gh, in the first term on the left-hand side of Eq. (3.1) we can neglect the
quantity �g compared with �gh. Then, the first equation of (1.1) takes the form

(3.2)

Eliminating ∂Sh/∂t from the heat flux equation (the fifth equation of (1.1)) and Eq. (3.2), and also taking Darcy’s law into account (the third
equation of (1.1)), we can obtain

(3.3)

Using the phase-equilibrium condition (1.3), we can write this equation in the form

(3.4)

We will compare the effects of conductive thermal conductivity and piezoconductivity when pressure fields propagate. It can be seen
from the expression for the coefficient in front of ∂p/∂x in Eq. (3.4) that the thermal conductivity is unimportant if the permeability kg
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satisfies the condition

(3.5)

For practical systems this critical permeability is very small: kg* ≈ 10−18 m2, and hence in the intermediate region the thermal conductivity
can also be neglected.

We will compare the second term on the left-hand side of Eq. (3.4), corresponding to convective heat transfer due to seepage of the gas,
with the right-hand side of this equation neglecting conductive thermal conductivity. We have for their ratio

(3.6)

This quantity is small for practical systems (when �p ∼ p0 for methane gas hydrates it amounts to 	 ≈ 2 × 10−2). Consequently, convective
heat transfer in the intermediate region is also unimportant. The heat flux equation can then be simplified and reduced to the form

(3.7)

Equation (3.7) can be integrated in the intermediate region (x(n) ≤ x ≤ x(d)). We obtain

(3.8)

where T(d) is the value of the temperature on the far boundary.
Substituting ∂Sh/∂t from Eq. (3.7) into Eq. (3.2), taking Darcy’s law (the third equality of (1.1)) and the phase-equilibrium condition (1.3)

into account, we obtain a non-linear equation for the dimensionless pressure

(3.9)

We will compare Eq. (3.9) with the usual linearized seepage equation9 with piezoelectric coefficient ℵ = k�0C2/(m�) (where C is the
velocity of sound for a fluid, defining its compressibility). It follows from a comparison of the formula for ℵ and the expression for ℵ(m)
from Eq. (3.9), that the effective velocity of sound for the system considered in the intermediate region is given by the expression

(3.10)

For methane gas hydrate with p0 = 3 MPa and mSg ≈ 10−10 this quantity amounts to C ≈ 250 m/s. Hence, the compressibility of the fluid in
the intermediate region is determined by phase-transition effects. Hence, expression (3.10) for the porous skeleton – gas hydrate – gas -
water system can be considered as an analogue of the Landau velocity of sound.10

Equation (3.9) takes the following form in self-similar variables

(3.11)

It can be seen from this equation that the non-linearity related to the change in the actual porosity (defined by the quantity Sg) is unimportant
if the following condition is satisfied

(3.12)

Taking the expressions for Sg0 and Sge into account (the last two expressions of Eq. (2.5)), we hence obtain the following critical condition
for the initial water saturation

(3.13)
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For methane gas hydrate S�∗ ≈ 0.8. When condition (3.13) is satisfied, and also, in more general cases, when we can neglect the variability
of Sg, and also assuming � 	 1 in Eq. (3.11), we can obtain the Leibenzon linearized solution

(3.14)

where S̃g and P̃ are certain mean values of the gas saturation and the dimensionless pressure in the intermediate region (P(d) ≤ P̃ ≤ P(n)).

4. The conditions on the boundary between the regions

Taking Darcy’s law into account (the third equality of (1.1)) for the near boundary (x = x(n)) we can obtain from conditions (1.4)

(4.1)

The superscripts plus and minus correspond to the value of the parameters which undergo discontinuities before and after the boundary.
On the far boundary we assume that the hydrate saturation undergoes no discontinuity S−

h(d) = S+
h(d) = 0. From similar conditions for x = x(d)

we obtain

(4.2)

In the intermediate region, the temperature and pressure are related by phase-equilibrium condition (1.3), and hence the derivatives
of the pressure and temperature on the boundary x = x(n) and x = x(d) must be related respectively by the relations

(4.3)

Using solutions (2.3) and condition (4.1) and taking the first relation of (4.3) into account we obtain

(4.4)

Equation (4.4) for specified values of the pressure and temperature on the boundary, defined by the dimensionless quantities Pe and �e,
connects the three quantities �(n), P(n) and S+

(n), while all the remaining quantities occurring here (S−
g(n) and S−

h(n), for example) are uniquely
defined by the initial values p0, T0 and S�0. Similarly from the condition on the far boundary (� = �(d)), taking solution (2.4) into account, we
obtain

(4.5)

Eliminating (dP/d�)−
(d) and (d�/d�)−

(d) and taking the second equality of (4.3) into account we have the equation

(4.6)

It relates the unknown quantities �(d) and P(d), which, in addition to the initial properties of the porous medium, depend on the conditions
for gas injection through the boundary x = 0.
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When the purely frontal mode of phase transitions occurs (the intermediate region degenerates to a surface �(n) = �(d) = �(s)), we obtain
from the mass and heat balance conditions (1.4), using analytic solutions (2.3) and (2.4),

(4.7)

(4.8)

For the functions �(p)
(n)(�), �(T)

(n)(�) and �(p)
(d)(�), �(T)

(d) (�), defined by formulae (2.3) and (2.4), we put �(n) = �(s) and �(d) = �(s).
Equations (4.7) and (4.8) for known values of the parameters of the system in the initial state, and also values of the pressure and

temperature on the boundary, enable us to determine the hydrodynamic and temperature fields in the porous medium. In order for the
solutions obtained not to be thermodynamically contradictory, the values of the temperature in the region x(s) < x < ∞ must be no higher
than its equilibrium values, defined by formula (1.3) for the current values of the pressure in this region. In particular, the necessary
condition for this is that the following inequalities should be satisfied for x = x(s)

(4.9)

or

(4.10)

The derivatives (d�/d�)+
(s) and (dP/d�)+

(s) must be calculated from solution (2.4).
Taking inequality (4.10) as the critical condition, which ensures that the solutions for � > �(s) are not physically contradictory, we can

write the equation of the line which is the boundary of the region in the (Pe, �e) plane, when a purely frontal gas hydrate formation mode
is obtained, in the form

(4.11)

This equation, together with equalities (4.7) and (4.8) gives the relation between Pe and �e.
Note that problems touching on the existence and evolution of abrupt changes in the hydrate saturation can be investigated using the

method described earlier in Refs 11 and 12.

5. The solution in the intermediate region

Hence, we have arrived at the boundary-value problem for Eq. (3.11) in the interval �(n) ≤ � ≤ �(d). Here the unknown coordinates of
the boundaries �(n) and �(d), and also the values of the pressures P(n) and P(d) at these boundaries must satisfy system of transcendental
equations (4.4) and (4.6). A numerical solution of this problem can be obtained by ranging the value of the pressure P(d) on the right
boundary of the intermediate region. By choosing the value of P(d) > 1, we start counting from the right boundary � = �(d), the coordinates
of which are defined uniquely by Eq. (4.6) in terms of P(d). Here the value of the first derivative P ′

(d), necessary to realize Cauchy’s problem
for Eq. (3.11), is determined using the first equation of (4.5). The Cauchy problem is then solved in the direction to the boundary � = �(n)
(with a negative step) for Eq. (3.11) with the “initial” conditions

until Eq. (4.4) is satisfied for the current values of the self-similar coordinate � and the dimensionless pressure P. Here the corresponding
quantities S+

h(n) and S+
g(n), occurring in Eq. (4.4), according to the third and fourth equalities of (3.9) are determined from the formulae

(5.1)

The values of P(d) are chosen until Eq. (4.4) is satisfied with the specified accuracy.
As numerical calculations show, in the majority of cases of practical interest, in the far region the variability of the temperature can be

neglected and one can assume T = T0. Hence, taking condition (1.3) into account, we will have P(d) = Ps0. In this case ranging is necessary
along the self-similar coordinate �(d) of the far boundary.
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If we use solution (3.14) for the intermediate region, boundary conditions (4.1) for � = �(n) can be written in the form

(5.2)

Boundary conditions (4.5) on the far boundary (� = �(d)) take the form

(5.3)

Since the quantities �(n) and �(d) are determined, on the basis of condition (1.3), by the values of the dimensionless pressures P(n) and
P(d), Eqs (5.2) and (5.3) enable us to determine completely the four unknown parameters �(n), �(d), P(n), P(d) from the known Pe and �e. The
values of these parameters, in turn, according to the analytical solutions (2.3) and (2.4), and also (3.14), enable the structure of the flow
and the temperature field in the porous medium to be determined.

6. The results of calculations

We carried out numerical calculations using the equations obtained above and also the analytical solutions. We took the following
values for the parameters defining the properties of the porous medium (unless otherwise stated), the water, gas and hydrate

In Fig. 2 we show the most typical patterns of the pressure, temperature and hydrate saturation fields as the boundary pressure pe

increases; on the right we show the coordinate increased fragments of the pattern of the near zone of the porous medium. For the initial
state of the moist porous medium we have assumed that p0 = 4 MPa and S�0 = 0.5. For pe = 4.4 MPa, when the value of the boundary
pressure is lower than p(1)

e (p(1)
e ≈ 4.5 MPa), no gas hydrate forms in the porous medium. For pe = 5 MPa we obtain the frontal phase

transition mode. However,13 when pe increases, beginning with a certain value pe = p(2)
e (for the system in question p(2)

e ≈ 5.5 MPa), for the
solution with the frontal boundary the temperature in the porous medium behind the hydrate formation front drops below the equilibrium
temperature, corresponding to the pressure distribution according to condition (1.3). Consequently, supercooling of the water and gas in
the pores is observed here, and hence this solution is physically contradictory. This in turn indicates that when pe > p(2)

e it is necessary to
construct a solution with an intermediate zone of hydrate formation. These solutions correspond to pe = 12 MPa and pe = 20 MPa. There is a
basic difference between these two solutions. Whereas for the solution corresponding to pe = 12 MPa, on the boundary � = �(n) the hydrate
saturation undergoes an abrupt change, for the solution pe = 20 MPa there is no such abrupt changes. The characteristic value of the pressure
pe = p(3)

e , when this abrupt change disappears, can be determined using the expression for Sh (the penultimate equation of (3.9), assuming
Sh = She. As a result, taking relations (2.2) into account, we obtain

For the example considered this characteristic value of the pressure is p(3)
e = 17 MPa.

Numerical analysis shows that when pe > p(3)
e the solution of the problem is simplified considerably. First, in the analytical solutions (2.3)

and (2.4) we can approximately assume that p(n) > p(3)
e and p(d) = ps0. Then these solutions will only contain two unknown parameters: �(n)

and �(d). If we use the analytic solutions (3.14) for the intermediate zone, then, from the first equations of systems (5.2) and (5.3), assuming
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Fig. 2.

Fig. 3.
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Fig. 4.

that S−
h(n) = S+

h(n), we obtain the equations

In Fig. 3 we show graphs of the self-similar coordinates of the frontal boundaries as a function of the boundary pressure. We took
k0 = 10−14 m2 for the permeability of the skeleton. It can be seen that as the boundary pressure pe increases, beginning from a certain value
p0, three characteristic parts of the relation are observed. On the first part (p0 ≤ pe ≤ p(1)

e ) no hydrate is formed in the porous medium (here
we have formally assumed that �(s) = 0). For the values of S�0 of 0.2 and 0.5 assumed, the value of the boundary pressure p(1)

e ≈ 4.5 MPa. On

the second part p(1)
e < pe ≤ p(2)

e the formation of the gas hydrate occurs in accordance with the frontal scheme, and here p(2)
e ≈ 5.5 MPa.

When there is a further increase in pe(pe > p(2)
e ) hydrate is formed in the volume.

Graphs of the pressure, temperature and hydrate saturation fields against the initial moisture content are shown in Fig. 4, constructed
in the same way as Fig. 2. We took pe = 30 MPa as the boundary pressure, while the values of all the remaining parameters were as before.
For these results of the calculations, the temperature of the flowing gas Te does not exceed the initial temperature T0 of the porous medium
(Te ≤ T0). Hence, the temperature of the porous medium cannot be higher than the equilibrium value, given by formula (1.3) for the
corresponding pressure fields. It can be seen that the maximum temperature of the porous medium occurs for an initial water saturation
of S�0 = 0.7. This is due to the fact that, for a fixed value of the permeability k0, the permeability falls considerably as the initial water
saturation increases, particularly in the region close to the boundary of the porous medium, where, in particular, the value of the hydrate
saturation for the above values of the initial water saturation is She = 0.13, 0.63 and 0.88. Also, as a consequence of this, the convective heat
transfer is reduced.
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Fig. 5.

In Fig. 5 we show the effect of the initial water saturation of the porous medium on the value of the maximum temperature which can
be obtained in the porous medium. Hence, due to the hydrate formation in the volume, the gas injected into the moist porous medium
becomes a unique heat transfer medium although its temperature may be lower than the initial temperature of the porous medium.
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